1. Einführung
  2. Lineare Regression
  3. Logistische Regression
  4. Generalized Linear Models
  5. Multinomial Logistic Regression
  6. Feature Engineering
  7. Bewerten und Tunen von Modellen
  8. Locally Weighted Regression
  9. Gaussian Discriminant Analysis
  10. Naive Bayes
  11. Support Vector Machines
  12. Anomaly Detection
  13. Decision Trees & Ensemble Models
  14. Clustering
  15. Neuronale Netzwerke